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Abstract

The Curry-Howard correspondence draws a direct link between logic and computation:
propositions are modelled as types and proofs as programs; to prove a proposition is to con-
struct a program inhabiting its corresponding type. Several computer-assisted theorem provers
have been developed under this idea. They are not just used to verify human reasoning: they
are also often capable of generating proofs automatically.

This project considers the development of such automated theorem provers in Agda, a de-
pendently typed programming language. As awarm-up, I present a verified solver for equations
on monoids. Then, I comment on the solver for commutative rings included in Agda’s stan-
dard library. Finally, I develop a verified decision procedure for Presburger arithmetic — a
decidable first-order predicate logic.
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1. Introduction
Formal proofs construct theorems by applying the rules of a formal system. Computers can
assist this process and make theorem proving a conversation between the human and the com-
puter, which checks the correctness of their proof. Yet, theorem proving can often be boring
and tedious: certain theorems are trivial or uninteresting but require many steps.

It is in these cases where automated theorem proving shines strongest: instead of applying
inference rules manually, the user can provide an automated solver with a proposition and
get a verified solution back. These decision procedures are often based on some meta-theory
about the system, and thus can result in fewer rewriting steps than the repeated application of
inference rules from inside the system.

The four color theoremwas the first notable problem to be solved with the help of a computer
program. Since 1976, there remained doubts of the correctness of such program until Georges
Gonthier used a proof assistant to prove the theorem in 2005.

This project embarks upon constructing verified problem solvers. Three different problems
are considered: the first two involve solving equalities on algebraic structures; the third de-
ciding a first-order predicate logic — Presburger arithmetic. The aim is to better understand
automated theorem proving as seen through the Curry-Howard lens.

§ 2 provides a brief introduction to the relationship between machine programs and formal
proofs, illustrated with accompainying Agda programs. It also includes a short introduction
to programming in Agda, and establishes some of the base ground required for the formal
verification of programs.

§ 3 starts with a simple example: a verified solver for equations on monoids. § 4 comments
on a more involved solver for commutative rings found in Agda’s standard library. This project
then culminates with § 5, where the heart of a Presburger arithmetic solver written in Agda is
presented. With some additional work, I am optimistic of its inclusion into Agda’s standard
library.

Concluding, § 6 reiterates on the correctness that the precision of dependently typed speci-
fications are able to guarantee, and § 7 and § 8 contain meta-analyses of the project’s develop-
ment process.
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2. Background
This chapter starts by briefly introducing the case for the use of type-checkers as theorem
verifiers. Next, a succinct primer on programming in Agda is given. In itself, such introduction
is probably not enough to get the unexperienced reader entirely comfortable readingAgda code.
Only more in-depth reading and hands-on practice are likely to achieve that. Nevertheless, it
is my hope that it facilitates enough understanding to intuitively grasp some of the ideas put
forward in later sections of this report.

2.1. Proofs as programs; propositions as types
If a computer is to verify the proof of some proposition, some computational model relat-
ing proofs and propositions must exist. One such model was first devised by Haskell Curry
[Curry, 1934] and later strengthened by William Alvin Howard [Howard, 1980]. It establishes
a two way correspondence between type theory and constructive logic: propositions are iso-
morphic to types and proofs are to programs; to prove a proposition is to construct a program
inhabiting its corresponding type; a proposition is not proven unless a program of the corre-
sponding type is given. Type-checkers can verify formal proofs.

Ignoring — for now — all details specific to Agda, here are some examples relating types
to logical propositions:

-- Truth: a set with a single element trivial to construct

data ⊤ ∶ Set where
tt ∶ ⊤

-- Falsehood: an uninhabited (empty) set

data ⊥ ∶ Set where

-- Disjunction

data _⊎_ (A B ∶ Set) ∶ Set where
inj1 ∶ A → A ⊎ B
inj2 ∶ B → A ⊎ B

-- Conjunction

data _×_ (A B ∶ Set) ∶ Set where
_,_ ∶ A → B → A × B

module Laws {A ∶ Set} where
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-- Principle of explosion

-- There is no constructor for ⊥, pattern matching on the

-- argument renders the case absurd

explosion ∶ ⊥ → A
explosion ()

-- Law of non-contradiction

-- AKA implication elimination

-- AKA function application

lnc ∶ A → (A → ⊥) → ⊥
lnc a a→⊥ = a→⊥ a

-- No proof by contradiction in constructive mathematics

-- A witness in A is needed, but there is none

dne ∶ ((A → ⊥) → ⊥) → A
dne f = {!!}

-- No law of excluded middle in constructive mathematics

-- (Decidability is not universal)

lem ∶ A ⊎ (A → ⊥)
lem = {!!}

Many variants exist on both sides of the isomorphism. The type theory of simply typed
lambda calculus — where→ is the only type constructor — is in itself enough to model propo-
sitional logic. Type theories with dependent types—where the definition of a typemay depend
on a value — model predicate logics that contain quantifiers. [Sørensen and Urzyczyn, 2006]
is a comprehensive introduction to these ideas.

-- Natural numbers, defined inductively

data ℕ ∶ Set where
zero ∶ ℕ
suc ∶ ℕ → ℕ

-- A predicate, or a type that depends on a value

Even ∶ ℕ → Set
Even zero = ⊤
Even (suc zero) = ⊥
Even (suc (suc n)) = Even n

-- The type of t depends on the value n

half ∶ (n ∶ ℕ) → (t ∶ Even n) → ℕ
half zero tt = zero
half (suc zero) () -- Even (suc zero) is empty

half (suc (suc n)) t = suc (half n t)
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Proofs should not suffer from the halting problem — they must be rejected if they do not
clearly show that they will eventually reach termination. If programs are considered to be
proofs, programs for which termination cannot be verified must be rejected.

One way of showing termination is by making recursive calls on structurally smaller ar-
guments. If the data is defined inductively, this assures that a base case is always eventually
reached, and that therefore recursion always eventually terminates.

_+_ ∶ ℕ → ℕ → ℕ
zero + m = m -- Base case of first argument

suc n + m = suc (n + m) -- First argument gets smaller

-- Would never terminate

-- nonsense : {!!}

-- nonsense = nonsense

2.2. Reasoning in Agda
Agda is a purely functional (no side-effects) dependently typed (types contain values) totally
defined (functions must terminate and be defined for every possible case) language based on
Per Martin-Löf’s intuitionistic type theory. It was first developed by Catarina Coquand in
1999 and later rewriten by Ulf Norell in 2007. It compiles to multiple languages, but Haskell
is regarded as its main backend. [Norell and Chapman, 2009] is an excellent introduction to
Agda; technical documentation can be found at https://agda.readthedocs.io. This section
briefly covers the basics of what theorem proving in Agda looks like and, in the spirit of a
tutorial, occasionally uses the second person to avoid verbose references to some third person
programmer or the excessive use of the passive voice.

2.2.1. Hole-driven development
Development in Agda happens inside Emacs, and is a two way conversation between the com-
piler and you. Wherever a definition is required, you may instead write ? and request the
type-checker to reload the file. A “hole” will appear where the ? was. You can then:

• examine the type of that goal;
• examine the types of the values in context;
• examine the type of any other arbitrary expression;
• pattern match on a type;
• supply a value, possibly containing further holes;
• attempt to refine the goal; or
• attempt to solve the goal automatically.
This interactive way of programming is often described as “hole driven”. Type-checking

definitions before writing them down promotes the construction of well-formed expressions
— instead of the construction and subsequent debugging of malformed ones. Allowing holes
in those definitions makes the development model realistic.
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2.2.2. Some peculiarities
For subsequent arguments to depend on it, an argument must be named. If an argument can be
inferred by the type-checker, you may choose to make it implicit by naming it inside enclosing
curly braces. Implicit arguments can later still be explicitly provided and pattern matched
against. If the type of an argument can be inferred by the type-checker, you may omit it and
use ∀:

-- All numbers are even or not even

prf1 ∶ ∀ {n} → Even n ⊎ (Even n → ⊥)
prf1 {zero} = inj1 tt
prf1 {suc zero} = inj2 (λ b → b)
prf1 {suc (suc n)} = prf1 {n}

Multiple arguments sharing the same type can be grouped by using multiple names for them.
With the exception of whitespace and a few other special symbols, names in Agda may contain
arbitrary unicode symbols. In addition, function names can use the so-called “misfix” notation,
where underscores are used as placeholders that determine where the function’s arguments are
placed.

∣_−_∣ ∶ (x y ∶ ℕ) → ℕ
∣ zero − y ∣ = y
∣ suc x − zero ∣ = suc x
∣ suc x − suc y ∣ = ∣ x − y ∣ -- Or ∣_-_∣ x y

An anonymous function can be provided wherever a function is expected. You can pattern
match against its arguments by wrapping the arguments and body in curly brances.

pred ∶ ℕ → ℕ
pred = λ { zero → zero

; (suc n) → n
}

2.2.3. Datatypes and pattern matching
Algebraic data types are introduced by the data keyword. They may contain multiple construc-
tors, all of which must be of the declared type.

data Bool ∶ Set where
true ∶ Bool
false ∶ Bool

Constructors can accept arguments, which may be recursive:

data Bools ∶ Set where
[] ∶ Bools
_∷_ ∶ Bool → Bools → Bools
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Datatypes may accept parameters. If they do, every constructor in the datatype has to have
that same parameter in its return type. Hence these parameters need to be named:

data List (A ∶ Set) ∶ Set where
[] ∶ List A
_∷_ ∶ A → List A → List A

Data types with a single constructor can be defined as records. Below, a record type where
the type of one of the fields depends on the value of the other:

record Σ (A ∶ Set) (B ∶ A → Set) ∶ Set where
constructor _,_
field
proj1 ∶ A
proj2 ∶ B proj1

Datatypes can be indexed. Each of these indices is said to introduce a family of types.
Constructors have the liberty to choose any index for the type they are constructing. While
parameters must remain unaltered by constructors, indices must not.

-- Parametrised by A : Set, indexed by ℕ

data Vec (A ∶ Set) ∶ ℕ → Set where
[] ∶ Vec A zero
_∷_ ∶ ∀ {n} → A → Vec A n → Vec A (suc n)

Pattern matching deconstructs a type, which creates one case for each constructor capable
of constructing that type:

-- Both constructors match Vec A n

map ∶ {A B ∶ Set}{n ∶ ℕ} → (A → B) → Vec A n → Vec B n
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs

-- Only _∷_ matches Vec A (suc n)

head ∶ {A ∶ Set}{n ∶ ℕ} → Vec A (suc n) → A
head (x ∷ xs) = x

Computation is advanced by pattern matching. The right hand side of each pattern match
case will have the type of the terms in its context refined by the information obtained from the
left hand side.

-- Note that xs, ys and the result have the same length

zipWith ∶ {A B C ∶ Set}{n ∶ ℕ} (f ∶ A → B → C) → Vec A n → Vec B n → Vec C n
-- zipWith f xs ys = {!!}

-- -- If xs was constructed with [], it has length zero

-- zipWith f [] ys = {!!}
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-- -- If xs has length zero, so does ys

-- zipWith f [] [] = {!!}

-- -- And so does the result

zipWith f [] [] = []
-- -- If xs was constructed with _∷_, it has length (suc n)

-- zipWith f (x ∷ xs) ys = {!!}

-- -- If xs has length (suc n), so does ys

-- zipWith f (x ∷ xs) (y ∷ ys) = {!!}

-- -- And so does the result

-- zipWith f (x ∷ xs) (y ∷ ys) = {!!} ∷ {!!}

zipWith f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys

If a type has no constructors capable of constructing it, the type-checker will recognise the
case as absurd and no definition will be required on the RHS. This, together with the precision
that dependent types grant, makes handling erroneous input unnecessary.

-- The successor of an even number cannot be even

prf2 ∶ ∀ {n} → Even n → Even (suc n) → ⊥
prf2 {zero} p ()
prf2 {suc zero} () sp
prf2 {suc (suc n)} p sp = prf2 {n} p sp

If pattern matching against a type uniquely implies the constructor of some other argument,
the type-checker will substitute the argument by the value preceded by a dot. If a term on the
RHS can be inferred by the type-checker, you may replace it by an underscore. Additionally,
underscores can be used as a non-binding catch-all pattern on the LHS of a definition.

-- Pattern matching on xs determines n

zipWith࿞ ∶ {A B C ∶ Set} (n ∶ ℕ) (f ∶ A → B → C) → Vec A n → Vec B n → Vec C n
zipWith࿞ .zero f [] [] = []
zipWith࿞ .(suc _) f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith࿞ _ f xs ys

“With abstraction” allows you to pattern match on the LHS against arbitrary computations.
This is often used to refine the rest of the arguments and then perform further pattern match-
ing on them. The following example is adapted from the standard library and was originally
presented in [McBride and McKinna, 2004]:

-- Ordering n m is a proof…

data Ordering ∶ ℕ → ℕ → Set where
less ∶ ∀ m k → Ordering m (suc (m + k))
equal ∶ ∀ m → Ordering m m
greater ∶ ∀ m k → Ordering (suc (m + k)) m

-- …that can be generated for any two numbers

compare ∶ ∀ m n → Ordering m n
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compare zero zero = equal zero
compare (suc m) zero = greater zero m
compare zero (suc n) = less zero n
compare (suc m) (suc n) with compare m n
compare (suc .m) (suc .(suc m + k)) | less m k = less (suc m) k
compare (suc .m) (suc .m) | equal m = equal (suc m)
compare (suc .(suc m + k)) (suc .m) | greater m k = greater (suc m) k

Pattern matching on compare m n uniquely defines m and n. This is the key difference be-
tween with abstraction and ordinary case splitting on the RHS. [Oury and Swierstra, 2008]
contains other interesting examples of views.

2.2.4. Intensional equality
Intensional equality judges two terms equal based on how they were constructed. Two terms
with identical behaviour but of different construction are considered different.

data _≡_ {A ∶ Set} (x ∶ A) ∶ A → Set where
refl ∶ x ≡ x

In x ≡ y, x is the parameter and y the index. The single constructor refl constructs
types where the parameter x is provided as the index too. This means that for x ≡ y to be
well-formed, Agda has to be able to unify x and y: once both terms are normalised into a tree
of constructors, they must be syntactically equal.

-- Both sides normalise to suc (suc zero)

prf3 ∶ (suc zero + suc zero) ≡ suc (suc zero)
prf3 = refl

You can now start writing functions that compute proofs involving equality:

-- zero + n immediately normalises to n

prf4 ∶ ∀ n → (zero + n) ≡ n
prf4 n = refl

However, not all equations immediately unify. Consider the following:

prf5 ∶ ∀ n → (n + zero) ≡ n

n + zero cannot be normalised: as a consequence of the definition of _+_ , it needs to be
known whether n was constructed with zero or suc . The computation can be advanced by
pattern matching on n. While the base case is now trivial (zero + zero unifies with zero ),
the problem persists in the inductive case, where suc (n + zero ) has to unify with suc n. By
recursing on the inductive hypothesis and on the subject of such hypothesis, n + zero and n
can be unified:
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prf5 zero = refl
prf5 (suc n) with n + zero | prf5 n
prf5 (suc n) | .n | refl = refl

This recursion on the induction hypothesis is common enough that special syntax exists for
it:

prf6 ∶ ∀ n → (n + zero) ≡ n
prf6 zero = refl
prf6 (suc n) rewrite prf6 n = refl

2.2.5. The inspect idiom
The so-called inspect idiom is occasionally used throughout the present work and deserves to
be briefly mentioned. When you pattern match on some expression e , a case will be generated
for every constructor c capable of constructing such an expression e. On the RHS of each of
these cases, it is clear that c ≡ e. You might want to pattern match on this proof or hand it over
to other functions. However, the case split does not add such a proof to context.

In such cases, the inspect idiom can be used to “remember” the result of pattern matching:

f n m with pred n | inspect pred n
f n m | zero | [ eq ] = {!!} -- eq : pred n ≡ zero

f n m | suc n࿞ | [ eq ] = {!!} -- eq : pred n ≡ suc n’

2.2.6. Tools for reasoning
To aid reasoning, tools that enable top-down whiteboard-style deductions have been devel-
oped. These functions exploit the transitivity of the binary relation they are defined for —may
be it equality or another preorder relation like ≤ or ⇒. Compared to the bare application of
transitivity, this style of reasoning leaves a clear “trail” of interleaving types and justifications
for their relation. Together with the congruent property of functions, it is used extensively
throughout this work.

cong ∶ ∀ {A B ∶ Set} (f ∶ A → B) {x y} → x ≡ y → f x ≡ f y
cong f refl = refl

prf7 ∶ ∀ l n m → ((zero + (l + zero)) + (n + zero)) + m ≡ (l + n) + m
prf7 l n m = begin
-- LHS of the equality

((zero + (l + zero)) + (n + zero)) + m
≡⟨⟩ -- The rewrite needs no justification, both types unify

((l + zero) + (n + zero)) + m
≡⟨ cong (λ ● → (● + (n + zero)) + m) (prf6 l) ⟩
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(l + (n + zero)) + m
≡⟨ cong (λ ● → (l + ●) + m) (prf6 n) ⟩

(l + n) + m
-- RHS of the equality

∎

2.2.7. Proof by reflection
Procedures that try to automatically solve goals require some notion of what their target the-
orem is. To prove the goal within Agda, this notion has to be manipulated and inspected by
pattern matching. To do so, it needs to be translated into an inductive data type— a process of-
ten calledmetaification or reflection. Both [Grégoire and Mahboubi, 2005] and [Boutin, 1997]
introduce this idea.

This is in contrast with proof assistants like Coq, which often supply externally defined
“tactics”: in Agda, automated theorem provers must be defined within the system.

The support for reflection that Agda offers gives the programmer the ability to “quote” arbi-
trary parts of the program into abstract terms representing them. In the other direction, these
abstract terms can be procedurally built and later “unquoted” into concrete Agda code. Addi-
tionally, Agda also offers means to directly control type checking and unification.

Agda’s reflection mechanism is most commonly used to satisfy proof goals automatically.
For this common use case, Agda provides “macros”: functions that take their target quoted
goal as an argument and hand back some computation that solves it.

The next example fromAgda’s documentation shows how themacro by−magic uses magic to
construct values of a given type. Note that magic returns a Term inside a TC monad: this
allows magic to throw type errors with custom error messages.

postulate magic ∶ Type → TC Term

macro
by−magic ∶ Term → TC ⊤
by−magic hole =
bindTC (inferType hole) λ goal →
bindTC (magic goal) λ solution →
unify hole solution

Both [van der Walt, 2012] and [van der Walt and Swierstra, 2012] are in-depth introductions
toAgda’s reflectionmechanism and come supplementedwith examples. [Kokke and Swierstra, 2015]
uses reflection to, given a list of hints, conduct automatic first-order proof search on a goal type.

2.2.8. Builtins, Stdlib and Prelude
Agda is distributed together with a set of builtin data types and functions found under the
Agda.Builtin module. These builtins are then referenced by a set of directives (or pragmas), so
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that Agda can, for instance, translate numerical literals into terms of type ℕ. Agda.Builtin does
not provide any proofs of the properties related to these data types.

The development ofAgda-Stdlib happens in close coordination toAgda’s. Unlike Agda.Builtin’s
conservative approach, Agda-Stdlib provides a large library of commonly used data structures
and functions. It abstracts aggressively which, together with its heavy use of unicode symbols
and infix notation, can often result in code challenging to read for the inexperienced user. It
contains a rather vast set of already proven theorems for all of its data types.

In comparison, Agda-Prelude is less abstract and more readable and efficient, but by far not
as complete.

This project uses Agda-Stdlib as its sole dependency.

2.2.9. Miscellanea
Universes

To avoid Russell’s paradox, Agda introduces a hierarchy of universes Set ∶ Set1 ∶ Set2… where
Set is the type of all small types like Bool or ℕ.

Postulates and safe mode

In Agda, any proposition can be introduced as a postulate. Some postulates can lead to incon-
sistencies:

postulate ¬LEM ∶ {A ∶ Set} → A ⊎ (A → ⊥) → ⊥
LEM ∶ {A ∶ Set} → A ⊎ (A → ⊥)
LEM with ¬LEM (inj1 tt)
LEM | ()

Executing Agda with the --safe switch deactivates those features that may lead to in-
consistencies, like postulates, accepting unsolved proofs or Set ∶ Set. Unfortunately, Agda’s
standard library does not quarantine unsafe definitions, so any module that depends on it is
considered unsafe too — even if does not use any of its unsafe features. There is work in
progress to address this.

2.3. Problem solvers and their domains
This report presents evidence providing problem solvers for three distinct domains — namely
monoids, commutative rings, and Presburger arithmetic. The background and the work related
to each of these domains is relevant only to itself. For that reason, and because I judge it
beneficial to have those introductory sections close to the work that depends on them, I present
the background of each problem inside its dedicated chapter.
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3. Solving monoids
Monoids are common algebraic structures found in many problems. A monoid solver is an
procedure that automatically generates a proof of the equality of two monoids. Constructing
such a solver is a good first approach to proof automation: it lacks the complexity of many
other problems but still has their same high-level structure.

3.1. Problem description and specification
Agda-Stdlib’s definition of a monoid is based on notions about many other algebraic structures,
and is therefore fairly complex. Instead, I present a self-contained and fairly simple definition:

-- A monoid is a set

record Monoid (M ∶ Set) ∶ Set where
infixl 25 _·_
field
-- Together with an associative binary operation

_·_ ∶ M → M → M
law−·−· ∶ (x y z ∶ M) → (x · y) · z ≡ x · (y · z)
-- And a neutral element absorbed on both sides

ε ∶ M
law−ε−· ∶ (m ∶ M) → ε · m ≡ m
law−·−ε ∶ (m ∶ M) → m ≡ m · ε

M, the set on which the monoid is defined, is often referred to as the carrier. (ℕ,+,0) and
(ℕ,·,1) are both examples of monoids. These examples also happen to be commutative, while
monoids need not be — more on solving commutative monoids later. Lists together with the
concatenation operation form non-commutative monoids.

LIST−MONOID ∶ (T ∶ Set) → Monoid (List T)
LIST−MONOID T = record

{ ε = []
; _·_ = _++_
; law−ε−· = λ xs → refl
; law−·−ε = right−[]
; law−·−· = assoc
} where

right−[] ∶ (xs ∶ List T) → xs ≡ xs ++ []
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right−[] [] = refl
right−[] (x ∷ xs) = cong (x ∷_) (right−[] xs)

assoc ∶ (xs ys zs ∶ List T) → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs)
assoc [] ys zs = refl
assoc (x ∷ xs) ys zs rewrite assoc xs ys zs = refl

An equation on monoids cannot be decided by unification alone: the monoid laws show that
definitionally distinct propositions might in fact have the same meaning.

eqn1 ∶ {T ∶ Set}(xs ∶ List T) → [] ++ xs ≡ xs ++ []
eqn1 {T} xs = begin
[] ++ xs
≡⟨ law−ε−· xs ⟩

xs
≡⟨ law−·−ε xs ⟩

xs ++ []
∎

where
open ≡−Reasoning
open Monoid (LIST−MONOID T)

Without an automated solver, the number of law applications and hence the length of the
proof grows with respect to the size of the term. An automated solver should allow to effort-
lessly satisfy a proposition like the following:

eqn2 ∶ {T ∶ Set}(xs ys zs ∶ List T)
→ (xs ++ []) ++ ([] ++ (ys ++ (ys ++ zs)))
≡ xs ++ ((ys ++ ys) ++ (zs ++ []))

eqn2 xs ys zs = begin
(xs ++ []) ++ ([] ++ (ys ++ (ys ++ zs)))
≡⟨ cong (_++ ([] ++ (ys ++ (ys ++ zs)))) (sym (law−·−ε xs)) ⟩

xs ++ ([] ++ (ys ++ (ys ++ zs)))
≡⟨ cong (xs ++_) (law−ε−· (ys ++ (ys ++ zs))) ⟩

xs ++ (ys ++ (ys ++ zs))
≡⟨ cong (xs ++_) (sym (law−·−· ys ys zs)) ⟩

xs ++ ((ys ++ ys) ++ zs)
≡⟨ cong (λ zs࿞ → xs ++ ((ys ++ ys) ++ zs࿞)) (law−·−ε _) ⟩

xs ++ ((ys ++ ys) ++ (zs ++ []))
∎

where
open ≡−Reasoning
open Monoid (LIST−MONOID _)
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3.2. A verified decision procedure
A proposition containing variables and monoid operators can be normalised into a canonical
form. The characteristics that make two propositions definitionally distinct — when they are
equal modulo themonoid axioms— can be eliminated. It is crucial that this process—normal-
isation into a canonical form — guarantees the preservation of meaning. After normalisation,
two results can be compared: if they are equal, the original expressions must be too. This is
the sketch of the decision procedure.

I use an abstract syntax tree to represent equations, and finite indices to refer to variables —
the type Fin n contains n distinct values. Moreover, I use a type parameter on Eqn to push in
this limitation on the number of indices.

data Expr (n ∶ ℕ) ∶ Set where
var࿞ ∶ Fin n → Expr n
ε࿞ ∶ Expr n
_·࿞_ ∶ Expr n → Expr n → Expr n

data Eqn (n ∶ ℕ) ∶ Set where
_≡࿞_ ∶ Expr n → Expr n → Eqn n

Consider the following two expressions:

𝑃 = ((𝜀 · 𝑥) · (𝑥 · 𝑦)) 𝑄 = ((𝑥 · 𝑥) · 𝑦)

Neutral elements do not have any meaning and can be absorbed:

𝑃 = (𝑥 · (𝑥 · 𝑦)) 𝑄 = ((𝑥 · 𝑥) · 𝑦)

Elements can always be re-associated: association does not have any meaning and can be
removed:

𝑃 = 𝑥 · 𝑥 · 𝑦 𝑄 = 𝑥 · 𝑥 · 𝑦

Both propositions can now be seen to be equal. It is worth remembering that these are not
commutative monoids, and that thus the order of the elements can matter.

Lists are a suitable data structure for representing flat elements — indices here — that can
appear multiple times and whose order carries meaning. In the case of commutative monoids,
where order does not carry any meaning, a matrix of indices and the number of occurrences of
each could be represented as a vector of integers — where the position in the vector represents
the index and the content represents the number of occurrences.

NormalForm ∶ ℕ → Set
NormalForm n = List (Fin n)
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The normalising function ignores neutral elements and preserves order:

normalise ∶ ∀ {n} → Expr n → NormalForm n
normalise (var࿞ i) = i ∷ []
normalise ε࿞ = []
normalise (e1 ·࿞ e2) = normalise e1 ++ normalise e2

From here on, I work with a concrete monoid (monoid) on a concrete carrier M. This results
in all of the definitions inside of the module having M and monoid defined. When called from
the outside of this module, these definitions have {M ∶ Set} (monoid ∶ Monoid M) prepended to
their type. I also make the definitions in monoid directly accessible by opening it as if it were
a module.

module _ {M ∶ Set} (monoid ∶ Monoid M) where
open Monoid monoid

To evaluate an expression, a concrete assignment for the variables containedwithin is needed.
This is often called an environment. An environment is a lookup table where each of the indices
has an associated value in the carrier M.

Env ∶ ℕ → Set
Env n = Vec M n

Now that expressions, normal forms and environments are defined, their evaluation can be
defined too. Note that both definitions rule out expressions and normal formswithmore indices
than the environment contains — every index in the expression has to have a corresponding
value in the environment.

-- lookup x ρ ≔ value at index x in ρ

⟦_⟧ ∶ ∀ {n} → Expr n → Env n → M
⟦ var࿞ i ⟧ ρ = lookup i ρ
⟦ ε࿞ ⟧ ρ = ε
⟦ e1 ·࿞ e2 ⟧ ρ = ⟦ e1 ⟧ ρ · ⟦ e2 ⟧ ρ

⟦_⇓⟧ ∶ ∀ {n} → NormalForm n → Env n → M
⟦ [] ⇓⟧ ρ = ε
⟦ (i ∷ e) ⇓⟧ ρ = (lookup i ρ) · ⟦ e ⇓⟧ ρ

Below, the formal specification of soundness for the decision procedure. If two monoids
are decided equal, they must evaluate to an equal value given any environment. However, no
claims can be made if they are not decided equal: the carrier may have properties other than
the monoidal. (Take, for instance, the natural numbers with addition, where 𝑎+𝑏 is equivalent
to 𝑏+𝑎.)

Solution ∶ ∀ {n} → Eqn n → Set
Solution {n} (e1 ≡࿞ e2) with (normalise e1) ≟ (normalise e2)
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... | no _ = ⊤

... | yes _ = ∀ (ρ ∶ Env n) → ⟦ e1 ⟧ ρ ≡ ⟦ e2 ⟧ ρ

The decidable equality of normal forms (here _≟_) is defined as the decidable equality of
lists of finite indices, which in turn relies on the decidable equality of finite indices.
Solution is a specification defined for a given equation. Such specification must be met for

all equations:

solve ∶ ∀ {n} (eqn ∶ Eqn n) → Solution eqn

If the evaluation of an expression can be shown to be decomposable into its normalisation
followed by the evaluation of such normal form, then by congruence of functions, an equiva-
lence of normal forms implies an equivalence of terms after evaluation:

solve (e1 ≡࿞ e2) with (normalise e1) ≟ (normalise e2)
... | no _ = tt
... | yes eq = λ ρ →
⟦ e1 ⟧ ρ
≡⟨ correct e1 ρ ⟩

⟦ normalise e1 ⇓⟧ ρ
≡⟨ cong (λ ● → ⟦ ● ⇓⟧ ρ) eq ⟩

⟦ normalise e2 ⇓⟧ ρ
≡⟨ sym (correct e2 ρ) ⟩

⟦ e2 ⟧ ρ
∎

where open ≡−Reasoning

Put in a diagrammatic form, the following diagram must be shown to commute:

Expr n

NormalForm n M

l=
norm

alise
e

⟦ l ⇓⟧ ρ

⟦ e ⟧ ρ

Figure 3.1.: ∀ e ρ → correct e ρ

For every expression constructor, it has to be shown that its corresponding normalisation
function does not affect the structure of the monoid. In the case of the normalisation of a · b
expressions, the proof for both sub-expressions is obtained inductively. For greater clarity, I
use this top-down whiteboard-style reasoning instead of the shorter rewrite directives.
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correct ∶ ∀ {n} (e ∶ Expr n) (ρ ∶ Env n)
→ ⟦ e ⟧ ρ ≡ ⟦ normalise e ⇓⟧ ρ

correct ε࿞ ρ = refl
correct (var࿞ x) ρ = law−·−ε (lookup x ρ)
correct (e1 ·࿞ e2) ρ = begin
⟦ e1 ⟧ ρ · ⟦ e2 ⟧ ρ
≡⟨ cong (λ ● → ● · _) (correct e1 ρ) ⟩

⟦ normalise e1 ⇓⟧ ρ · ⟦ e2 ⟧ ρ
≡⟨ cong (λ ● → _ · ●) (correct e2 ρ) ⟩

⟦ normalise e1 ⇓⟧ ρ · ⟦ normalise e2 ⇓⟧ ρ
≡⟨ ++−homo (normalise e1) (normalise e2) ρ ⟩

⟦ normalise e1 ++ normalise e2 ⇓⟧ ρ
∎

where open ≡−Reasoning

Proving that _++_ preservers the monoid’s structure must be done by induction on the first
argument. Unsurprisingly, together these two proofs use all of the monoid laws.

++−homo ∶ ∀ {n} (e1 e2 ∶ NormalForm n) → (ρ ∶ Env n)
→ ⟦ e1 ⇓⟧ ρ · ⟦ e2 ⇓⟧ ρ ≡ ⟦ e1 ++ e2 ⇓⟧ ρ

++−homo [] e2 ρ = law−ε−· (⟦ e2 ⇓⟧ ρ)
++−homo (i ∷ e1) e2 ρ = begin
((lookup i ρ) · ⟦ e1 ⇓⟧ ρ) · ⟦ e2 ⇓⟧ ρ
≡⟨ law−·−· _ _ _ ⟩

(lookup i ρ) · (⟦ e1 ⇓⟧ ρ · ⟦ e2 ⇓⟧ ρ)
≡⟨ cong (λ ● → lookup i ρ · ●) (++−homo e1 e2 ρ) ⟩

(lookup i ρ) · ⟦ e1 ++ e2 ⇓⟧ ρ
∎

where open ≡−Reasoning

3.3. Results and usage
Proofs for arbitrary equations on monoids can automatically be generated now:

eqn1−auto ∶ {T ∶ Set}(xs ∶ List T) → [] ++ xs ≡ xs ++ []
eqn1−auto xs = solve (LIST−MONOID _)

((ε࿞ ·࿞ var࿞ zero) ≡࿞ (var࿞ zero ·࿞ ε࿞)) (xs ∷ [])

However, the user still needs to manually build the expressions that represent the target
theorem. This includes appropriately handling the indices that refer to variables. As shown by
[Bove et al., 2009] at http://www.cse.chalmers.se/~ulfn/code/tphols09/, index references
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can be set up automatically, partially alleviating this problem and resulting in the following
usage:

eqn2−auto ∶ {T ∶ Set}(xs ys zs ∶ List T)
→ (xs ++ []) ++ ([] ++ (ys ++ (ys ++ zs)))
≡ xs ++ ((ys ++ ys) ++ (zs ++ []))

eqn2−auto xs ys zs = solve (LIST−MONOID _) (build 3 λ xs ys zs
→ ((xs ·࿞ ε࿞) ·࿞ (ε࿞ ·࿞ (ys ·࿞ (ys ·࿞ zs))))
≡࿞ (xs ·࿞ ((ys ·࿞ ys) ·࿞ (zs ·࿞ ε࿞)))) (xs ∷ ys ∷ zs ∷ [])

Agda’s support for reflection can be used to build a macro that inspects the type of the goal
and translates it into a data structure that the proof generating procedure can inspect. This
would result in the following example usage:

eqn2−magic ∶ {T ∶ Set}(xs ys zs ∶ List T)
→ (xs ++ []) ++ ([] ++ (ys ++ (ys ++ zs)))
≡ xs ++ ((ys ++ ys) ++ (zs ++ []))

eqn2−magic = magic−solve (LIST−MONOID _)
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4. Solving commutative rings
A commutative ring is a carrier set R together with two binary operations generalising multi-
plication and addition. Under multiplication, R is a commutative monoid; under addition, an
abelian group — providing an extra inverse law; multiplication distributes over addition.

record CommutativeRing (R ∶ Set) ∶ Set where
infixl 5 _+_
infixl 10 _∗_
infix 15 −_
field
_∗_ ∶ R → R → R
1# ∶ R
∗−assoc ∶ (x y z ∶ R) → (x ∗ y) ∗ z ≡ x ∗ (y ∗ z)
∗−comm ∶ (x y ∶ R) → x ∗ y ≡ y ∗ x
∗−identity ∶ (x ∶ R) → x ∗ 1# ≡ x

_+_ ∶ R → R → R
0# ∶ R
+−assoc ∶ (x y z ∶ R) → (x + y) + z ≡ x + (y + z)
+−comm ∶ (x y ∶ R) → x + y ≡ y + x
+−identity ∶ (x ∶ R) → x + 0# ≡ x
−_ ∶ R → R
+−inverse ∶ (x ∶ R) → x + − x ≡ 0#

distrib ∶ (x y z ∶ R) → (y + z) ∗ x ≡ (y ∗ x) + (z ∗ x)

4.1. Problem description and specification
Proving equalities on commutative rings can be tedious:

open CommutativeRing INT−COMM−RING
eqn3 ∶ (x y z ∶ ℤ) → y ∗ (− ((+ 2) ∗ x) + z + (+ 2) ∗ x) ≡ y ∗ z
eqn3 x y z = begin
y ∗ ((− ((+ 2) ∗ x) + z) + ((+ 2) ∗ x))
≡⟨ cong (λ ● → y ∗ (● + (+ 2) ∗ x)) (+−comm (− ((+ 2) ∗ x)) z) ⟩

y ∗ ((z + − ((+ 2) ∗ x)) + ((+ 2) ∗ x))
≡⟨ cong (λ ● → y ∗ ●) (+−assoc z _ _) ⟩
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y ∗ (z + (− ((+ 2) ∗ x) + ((+ 2) ∗ x)))
≡⟨ cong (λ ● → y ∗ (z + ●)) (+−comm _ _) ⟩

y ∗ (z + ((+ 2) ∗ x + − ((+ 2) ∗ x)))
≡⟨ cong (λ ● → y ∗ (z + ●)) (+−inverse ((+ 2) ∗ x)) ⟩

y ∗ (z + (+ 0))
≡⟨ cong (y ∗_) (+−identity z) ⟩

y ∗ z
∎

where open ≡−Reasoning

The goal of a problem solver for equalities on commutative rings is to generate these proofs
automatically for any commutative ring.

4.2. A verified decision procedure
Soon after I started to develop a solver in Agda, I found out that Agda’s standard library already
includes one, and that it is far more general than anything I could have written. Consequently,
I decided to comment on their solution instead.

An automated solver for equations on commutative rings was provided in [Boutin, 1997]
as an example use of reflection in automated theorem proving. Coq’s ring tactic imple-
mented such solver. Later, [Grégoire and Mahboubi, 2005] proposed a more efficient solu-
tion, which Coq adopted. [Russinoff, 2017] adapts Grégoire and Mahboubi’s solution to the
theorem prover ACL2 in a structured manner and is clarifying in some regards.

Expressions are represented as polynomials that are indexed by the number of variables in
them. Shortcut functions for common operations like addition, multiplication and subtraction
are provided.

data Op ∶ Set where
[+] ∶ Op
[∗] ∶ Op

data Polynomial (m ∶ ℕ) ∶ Set r1 where
op ∶ (o ∶ Op) (p1 ∶ Polynomial m) (p2 ∶ Polynomial m) → Polynomial m
con ∶ (c ∶ C.Carrier) → Polynomial m
var ∶ (x ∶ Fin m) → Polynomial m
_∶^_ ∶ (p ∶ Polynomial m) (n ∶ ℕ) → Polynomial m
∶−_ ∶ (p ∶ Polynomial m) → Polynomial m

The solver’s high-level structure is similar to the monoid solver’s one described in § 3. The
heart of it proves that evaluating a polynomial within an environment 𝜌 is equal to first nor-
malising it and then evaluating its normal form within 𝜌 — it shows that normalisation is
structure-preserving. Akin to solve in § 3.2, this proof is then used to conclude that if two
normal forms are equivalent, so must the original polynomials after evaluation be.

Polynomials with a single variable can be represented as Horner normal forms:
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𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 +…+ 𝑎0
≡((𝑎𝑛𝑥+ 𝑎𝑛−1)𝑥 +…)𝑥 + 𝑎0

mutual
data HNF ∶ ℕ → Set r1 where
∅ ∶ ∀ {n} → HNF (suc n)
_∗x+_ ∶ ∀ {n} → HNF (suc n) → Normal n → HNF (suc n)

To make the solution multivariate, coefficients are replaced by polynomials containing the
additional variables. Integer coefficients form a commutative ring too, and thus this results in
an opportunity to handle both integer coefficients and coefficients containing additional vari-
ables uniformly, as commutative rings.

𝑦2𝑥2 +𝑦2 +𝑦𝑥+ 2𝑥+ 2
≡((0 + 𝑦𝑦+ 1)𝑥 +𝑦+ 2)𝑥 +𝑦𝑦+ 2

data Normal ∶ ℕ → Set r1 where
con ∶ C.Carrier → Normal zero
poly ∶ ∀ {n} → HNF (suc n) → Normal (suc n)

In fact, the module does not require constant coefficients to be integers. Any commutative
ring that can be evaluated into the main ring in a law-respecting manner and has decidable
equality suffices.

module CommutativeRings
{r1 r2 r3}
(Coeff ∶ RawRing r1) -- Coefficient ”ring”.

(R ∶ AlmostCommutativeRing r2 r3) -- Main ”ring”.

(morphism ∶ Coeff −Raw−AlmostCommutative⟶ R)
(_coeff≟_ ∶ Decidable (Induced−equivalence morphism))
where

private module C = RawRing Coeff

The module handles equality generically, as a binary relation on the carrier set. This and the
need to evaluate constant coefficients, results in an inductive definition of equality of normal
forms being necessary.

mutual
data _≈H_ ∶ ∀ {n} → HNF n → HNF n → Set (r1 ⊔ r3) where
∅ ∶ ∀ {n} → _≈H_ {suc n} ∅ ∅
_∗x+_ ∶ ∀ {n} {p1 p2 ∶ HNF (suc n)} {c1 c2 ∶ Normal n} →
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p1 ≈H p2 → c1 ≈N c2 → (p1 ∗x+ c1) ≈H (p2 ∗x+ c2)

data _≈N_ ∶ ∀ {n} → Normal n → Normal n → Set (r1 ⊔ r3) where
con ∶ ∀ {c1 c2} → ⟦ c1 ⟧࿞ ≈ ⟦ c2 ⟧࿞ → con c1 ≈N con c2
poly ∶ ∀ {n} {p1 p2 ∶ HNF (suc n)} → p1 ≈H p2 → poly p1 ≈N poly p2

Evaluation within an environment of both polynomial expressions and normal forms is then
defined. Similar to monoids, environments are vectors of elements belonging to the carrier set,
and need to be of the same length as the number of unknowns in the polynomial or normal
form being evaluated. Evaluation of normal forms is then shown to be congruent with respect
to the inductive equality.

The exact choice of normal form influences both performance and the complexity of proofs.
The data type presented previously does not in itself ensure the uniqueness of those normal
forms that evaluate to 0— 0𝑥 can be represented both as ∅ and ∅ ∗x+ con C.0#. To remedy this
(and keep the size of terms small) a wrapper function that (if pertinent) minimises univariate
Horner normal forms to ∅ is defined around _∗x+_.

Operations like addition and multiplication are defined for Horner normal forms and then
used by the normalisation process, which operates inductively. Both the operations and the
normalisation process use the simplifying variant of _∗x+_ to keep their results canonical.

For each operation, a homomorphism lemma is proven, showing that evaluating the given
operation on any two normal forms is equivalent to evaluating both normal forms separately
and then applying the given operation to them. Finally, the main correctness proof uses these
lemmas to inductively proof that as a whole, normalisation respects the structure of commuta-
tive rings.

4.3. Usage
An example usage of a ring solver for integers follows. The last argument is an equality proof
between the target theorem and the theorem proven by the solver. This allows later rewrites
and adjustments.

open Data.Integer.Properties.RingSolver

ex1 ∶ (x y z ∶ ℤ)
→ x ^ 3 + y ∗ x ^ 2 − x ^ 2 + + 2 ∗ x ∗ y + y ^ 2 − + 2 ∗ x − + 2 ∗ y
≡ (x + y − + 2) ∗ (x ^ 2 + x + y)

ex1 = solve 3 (λ x y z →
x ∶^ 3 ∶+ y ∶∗ x ∶^ 2 ∶− x ∶^ 2 ∶+ con (+ 2) ∶∗ x ∶∗ y
∶+ y ∶^ 2 ∶− con (+ 2) ∶∗ x ∶− con (+ 2) ∶∗ y

∶= (x ∶+ y ∶− con (+ 2)) ∶∗ (x ∶^ 2 ∶+ x ∶+ y))
refl
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5. Solving Presburger arithmetic
In 1929, Mojżesz Presburger presented and proved decidable a predicate logic on natural
numbers (expandable to integers, rational numbers or real numbers) with addition as its only
operation. The original paper [Presburger, 1929] is in Polish and uses outdated notation;
[Stansifer, 1984] contains an English translation and comments clarifying the original. Sev-
eral procedures capable of deciding Presburger arithmetic exist, some of them I introduce later
on. Nevertheless, [Fischer and Rabin, 1974] showed that the worst case run time of any such
procedure is doubly exponential.

Here are some example simple predicates that better illustrate the expressiveness of Pres-
burger arithmetic.

∀𝑥. ∃𝑦. 𝑥 = 2𝑦 ∨ 𝑥 = 2𝑦+ 1 (5.1)
∀𝑥. ¬∃𝑦. 2𝑥 = 2𝑦+ 1 (5.2)

∀𝑥. 4|𝑥 ⇒ 2|𝑥 (5.3)
∀𝑥. 𝑥 < 𝑥+ 1 (5.4)

To our knowledge, there is no other implementation of a decision procedure for Presburger
arithmetic written in Agda. In this chapter, I introduce two decision procedures on integers
and partly implement one of them, then verify its correctness.

5.1. Problem description and specification
To solve Presburger arithmetic is to create a verified procedure capable of deciding any well-
formed Presburger predicate where all variables are bound. Without an automated procedure,
proving a predicate like Equation 5.1 can already become burdensome:

pred1 ∶ ∀ n → ∃ λ m → ((n ≡ 2 ∗ m) ⊎ (n ≡ 2 ∗ m + 1))
pred1 zero = 0 , inj1 refl
pred1 (suc zero) = 0 , inj2 refl
pred1 (suc (suc n)) with pred1 n
pred1 (suc (suc .(m࿞ + (m࿞ + 0)))) | m࿞ , inj1 refl =
suc m࿞ , inj1 (cong suc (sym (+−suc m࿞ (m࿞ + 0))))

pred1 (suc (suc .(m࿞ + (m࿞ + 0) + 1))) | m࿞ , inj2 refl =
suc m࿞ , inj2 (cong suc (cong (_+ 1) (sym (+−suc m࿞ (m࿞ + 0)))))

I define Presburger predicates as any formulae built using the following syntax:
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data Atom (i ∶ ℕ) ∶ Set where
num࿞ ∶ ℤ → Atom i
_+࿞_ ∶ Atom i → Atom i → Atom i
_−࿞_ ∶ Atom i → Atom i → Atom i
_∗࿞_ ∶ ℤ → Atom i → Atom i
var࿞ ∶ Fin i → Atom i

data Rel ∶ Set where
<࿞ >࿞ ≤࿞ ≥࿞ =࿞ ∶ Rel

data Formula (i ∶ ℕ) ∶ Set where
-- Divisibility

_∣࿞_ ∶ ℕ → Atom i → Formula i
_[_]_ ∶ Atom i → Rel → Atom i → Formula i
_∧࿞_ _∨࿞_ _⇒࿞_ ∶ Formula i → Formula i → Formula i
¬࿞_ ∶ Formula i → Formula i
-- Introduction of new variables

∃࿞_ ∀࿞_ ∶ Formula (suc i) → Formula i

I use de Bruijn indices [de Bruijn, 1972] to refer to bindings by their proximity: a variable
with index 0 refers to the variable introduced by the most immediate binding to its left; index
n refers to the variable introduced n bindings away. Using de Bruijn indices instead of variable
names has two main advantages:

• there is no need to rename variables on substitution; and
• the choice of variable names does not affect equality.

For any formula of type Formula n, n indicates the number variables introduced outside of
that formula. Quantifiers ∀࿞_ and ∃࿞_make a new variable available to their arguments.

Equation 5.1 can be transcribed as follows:

pred࿞1 ∶ Formula 0
pred࿞1 = ∀࿞ ∃࿞ ((x [ =࿞ ] ((+ 2) ∗࿞ y))

∨࿞ (x [ =࿞ ] (((+ 2) ∗࿞ y) +࿞ (num࿞ (+ 1)))))
where
x = var࿞ (suc zero)
y = var࿞ zero

5.2. Decision procedures
There exist numerous procedures capable of deciding Presburger arithmetic. They are primar-
ily distinguished by the domain of their formulae and their normalisation requirements. The
satisfiability of Presburger formulae in any domain gets carried onto superset domains; the
unsatisfiability gets carried onto subset domains, as noted in [Janičić et al., 1997].
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ℕ ℤ ℚ ℝ
⊨ℕ𝑃⟹⊨ℤ𝑃

⊭ℕ𝑃⟸⊭ℤ𝑃

⊨ℤ𝑃⟹⊨ℚ𝑃

⊭ℤ𝑃⟸⊭ℚ𝑃

⊨ℚ𝑃⟹⊨ℝ𝑃

⊭ℚ𝑃⟸⊭ℝ𝑃

Figure 5.1.: Decidability across domains

Some Presburger formulae are valid on integers but invalid on natural numbers: ∃𝑥.𝑥+1=0.
Others are valid on rational numbers but invalid on integers: ∃𝑥. 2𝑥=1. When considering
which decision procedures to explore, I immediately discarded the ones acting on real numbers
— irrational numbers are not straightforward to handle in constructive mathematics. The most
well-documented procedures are on integers, and the usage of integer Presburger arithmetic
is common enough for an automated solver to be of great value. Given a solver for problems
on integers, one just needs add the extra condition 0≤𝑥 to every existential quantifier to solve
problems on natural numbers.

I chose the Omega Test and Cooper’s Algorithm as the two integer decision procedures to
explore. Michael Norrish depicts in [Norrish, 2003] the state of affairs concerning the imple-
mentation of Presburger arithmetic deciding procedures by proof assistants. He then continues
describing the Omega Test and Cooper’s Algorithm and proposes verified implementations for
both of them for the proof assistant HOL. A later talk gives additional details. [Norrish, 2006]

5.3. The Omega Test
TheOmega Test was first introduced in [Pugh, 1991]. It adapts Fourier-Motzkin elimination—
which acts on real numbers— to integers, and requires the input formula to be put in disjunctive
normal form.

This section starts by implementing a normalisation procedure that puts input formulae into
their equivalent normal forms. It then takes a leap and implements variable elimination for
quantifier-free existential formulae and verifies it sound. Finally, it provides the reader with
some usage examples and outlines future work.

This section is significantly based on thematerial found in [Norrish, 2003] and [Norrish, 2006].

5.3.1. Normalisation
Transforming input formulae into disjunctive normal forms can blow up the size of formulae
exponentially, as can clearly be seen whenever a conjunction is normalised over a disjunction:

(𝑃 ∨𝑄) ∧ (𝑅∨𝑆) ≡ (𝑃∧𝑅) ∨ (𝑃∧𝑆) ∨ (𝑄∧𝑅) ∨ (𝑄∧𝑆)
As part of normalisation, universal quantifiers need to be transformed into existential ones

resorting on the following equivalence:

∀𝑥.𝑃(𝑥) ≡ ¬∃𝑥.¬𝑃(𝑥)
Existential quantifiers must be distributed over disjunctions:
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∃𝑥. 𝑃(𝑥) ∨𝑄(𝑥) ≡ (∃𝑥. 𝑃(𝑥)) ∨ (∃𝑥. 𝑄(𝑥))
Negation needs to be pushed inside conjunctions and disjunctions, and double negation

needs to be eliminated:

¬(𝑃(𝑥) ∧𝑄(𝑥)) ≡ ¬𝑃(𝑥) ∨¬𝑄(𝑥)
¬(𝑃(𝑥) ∨𝑄(𝑥)) ≡ ¬𝑃(𝑥) ∧¬𝑄(𝑥)

¬¬𝑃(𝑥) ≡ 𝑃(𝑥)

Operations on Atoms are evaluated into linear transformations of the form 𝑎𝑥+𝑏𝑦+…+𝑐𝑧+𝑘.
As a consequence of limiting the domain to integers, all constraints can be translated into
the canonical form 0≤𝑎𝑥+𝑏𝑦+…+𝑐𝑧+𝑘. I use a single type to represent them both, and a
parameter on that type to keep record of the number of variables within. A vector of the same
length contains the coefficients 𝑎𝑥+𝑏𝑦+…+𝑐𝑧, where each coefficient’s index is a de Bruijn
index indicating the distance in bindings to where the variable was introduced. An additional
constant is used to represent 𝑘.

record Linear (i ∶ ℕ) ∶ Set where
constructor _∷+_
field
cs ∶ Vec ℤ i
k ∶ ℤ

Relations are normalised as follows:

𝑝 < 𝑞 ≡ 0 ≤ 𝑞− 𝑝+ 1
𝑝 > 𝑞 ≡ 0 ≤ 𝑝− 𝑞+ 1
𝑝 ≤ 𝑞 ≡ 0 ≤ 𝑞− 𝑝
𝑝 ≥ 𝑞 ≡ 0 ≤ 𝑝− 𝑞
𝑝 = 𝑞 ≡ 0 ≤ 𝑞− 𝑝∧ 0 ≤ 𝑝− 𝑞

Divide terms and their negations are special cases. The Omega Test produces them as a
byproduct of its main theorem and uses a specific algorithm to eliminate them, as shown later.
However, I do not implement such a procedure (discussed later) so I normalise divide terms
into constraints by introducing a new existential quantifier:

𝑛 ∣ 𝑎 ≡ ∃𝑥. 𝑛𝑥 = 𝑎
𝑛 ∤ 𝑎 ≡ ∃𝑥. ⋁

𝑖∈1…𝑛−1
𝑛𝑥 = (𝑎 + 𝑖)

Taking all into account, the result of normalisation has to be a structure where:
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(i) the top layer is a disjunction; (ii) a disjunction only contains conjunctions; and (iii) a
conjunction only contains conjunctions, existential quantifiers, negated existential quantifiers,
or atoms.

The following tree-like structure contains Linears as leafs and, within each conjunction,
distinguishes leafs from further sub-trees containing existential quantifiers.

As with Formulas, note that the restriction on the number of available variables is pushed
inside the structure — DNF n can only contain Conjunction n and so forth. The constructors
∃ and ¬∃ make one more variable available to their substructures.

mutual
data Existential (i ∶ ℕ) ∶ Set where
¬∃ ∶ Conjunction (suc i) → Existential i
∃ ∶ Conjunction (suc i) → Existential i

record Conjunction (i ∶ ℕ) ∶ Set where
inductive
constructor 0≤_∧_E
field
constraints ∶ List (Linear i)
existentials ∶ List (Existential i)

DNF ∶ (i ∶ ℕ) → Set
DNF i = List (Conjunction i)

Normalisation proceeds recursively, eliminating universal quantifiers, pushing conjunction
and negation inward, normalising implication, evaluating operations on atoms and normalising
relations between them. For the exact procedure see the accompanying code.

5.3.2. Elimination
Once normalisation has taken place, the elimination process is ran recursively on quantifier-
free sub-formulae. The heart of this is an equivalence theorem that eliminates the variable
bound by the innermost existential quantifier:

∃𝑥.𝑃(𝑥) ≡ 𝑄

Theorem 1 (Pugh, 1991). Let 𝐿(𝑥) be a conjunction of lower bounds on 𝑥, indexed by 𝑖, of the
form 𝑎𝑖≤𝛼𝑖𝑥, with 𝛼𝑖 positive and non-zero. Similarly, let 𝑈(𝑥) be a set of upper bounds on
𝑥, indexed by 𝑗, of the form 𝛽𝑗𝑥≤𝑏𝑗, with 𝛽𝑗 positive and non-zero. Let𝑚 be the maximum of
all 𝛽𝑗s. Then:
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(∃𝑥.𝐿(𝑥) ∧𝑈(𝑥)) ≡ ⎛⎜⎜
⎝
⋀
𝑖,𝑗
(𝛼𝑖 − 1)(𝛽𝑗 − 1) ≤ (𝛼𝑖𝑏𝑗 − 𝑎𝑖𝛽𝑗)

⎞⎟⎟
⎠

∨

⋁
𝑖

⌊𝛼𝑖−
𝛼𝑖
𝑚 −1⌋

⋁
𝑘=0

∃𝑥.(𝛼𝑖𝑥 = 𝑎𝑖 + 𝑘) ∧ 𝐿(𝑥) ∧𝑈(𝑥)

Pugh refers to the first disjunct as the real shadow and to the remaining as splinters. If all
𝛼𝑖 or all 𝛽𝑗 are 1 — that is, if for every (𝛼,𝛽) pair 𝛼≡1∨𝛽≡1 —, the theorem reduces to the
exact shadow:

∃𝑥.𝐿(𝑥) ∧𝑈(𝑥) ≡ ⋁
𝑖,𝑗
𝑎𝑖𝛽𝑗 ≤ 𝛼𝑖𝑏𝑗

My initial intention was to implement and verify the complete theorem. However, I quickly
found out about the complexity introduced by splinters. Each splinter introduces a new exis-
tential quantifier. This quantifier is then eliminated by the following terminating method based
on the Euclidean algorithm for the computation of greatest common divisors:

𝑥 is the variable to eliminate
∃𝑦.∃𝑥.…∧ 𝑎𝑥 = 𝑏𝑦+ 𝑒∧… (5.5)

Find the lowest common divisor ℓ of all the coefficients on 𝑥 and multiply every constraint by
an integer 𝑛 so that its coefficient on 𝑥 is ℓ

∃𝑦.∃𝑥.…∧ ℓ𝑥 = 𝑏࿗𝑦+ 𝑒࿗ ∧… (5.6)
Set all coefficients on 𝑥 to 1 resorting to the equivalence 𝑃(ℓ𝑥)≡𝑃(𝑥)∧ℓ∣𝑥.

∃𝑦.∃𝑥.…∧ (𝑥 = 𝑏࿗𝑦+ 𝑒࿗) ∧ (ℓ ∣ 𝑥) ∧… (5.7)
Substitute 𝑥

∃𝑦.…∧ ℓ ∣ 𝑏࿗𝑦+ 𝑒࿗ ∧… (5.8)
Eliminate the divides term by introducing a new existential

∃𝑦.∃𝑧.…∧ ℓ𝑧 = 𝑏࿗𝑦+ 𝑒࿗ ∧… (5.9)
Rearrange

∃𝑦.∃𝑧.…∧ 𝑏࿗𝑦 = ℓ𝑧 − 𝑒࿗ ∧… (5.10)
𝑦 is the variable to eliminate

Crucially, Equation 5.8 guarantees the eventual elimination of the divides term, as 𝑏࿞<ℓ
— and modulus if not. This recursive computation, justified because a transitive relation to-
wards the left on < for natural numbers eventually terminates, is not entirely trivial to model.
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Commonly, structural recursion is applied onto terms that have been deconstructed by pattern
matching— and thus structures get smaller in “fixed steps”. Here, on the other hand, recursion
has to be shown to terminate by account of the divides term’s coefficient decreasing in steps
of variable size.

As for verification, splinters introduce considerable complexity too. Pugh’s theorem is of
form LHS≡𝐷1∨𝐷2. That shapes the proof, which first shows the soundness of both disjuncts by
proving that𝐷1⟹ LHS and𝐷2⟹ LHS and then its completeness by proving that LHS∧¬𝐷1⟹
𝐷2. From these three proof obligations, the last one is the hardest to satisfy.

After some initial exploratory programming, given the complexity they entail, both in terms
of implementation and verification, and taking time constraints into account, I decided to dis-
card implementing splinters. Other interactive theorem provers like Coq, HOL or Isabelle,
limit the completeness of their implementations too, often just to the real shadow.

This decision left me with two components:
Dark shadow Always applicable. Formulae decided satisfiable after elimination can be shown

to be satisfiable before elimination.

Real shadow Only applicable when all 𝛼 or all 𝛽 are 1. It preserves both satisfiability and
unsatisfiability.

A decision procedure with only these tests is sound but incomplete, and thus has three pos-
sible outcomes:

data Result ∶ Set where
satisfiable unsatisfiable undecided ∶ Result

Implementing the dark shadow is not involved. With 𝑙 as the lower bound constraint, 𝑢 as
the upper bound and 𝛼, 𝑎, 𝛽 and 𝑏 as per Pugh:

_↓p ∶ ∀ {i} → Pair (suc i) → Linear i
((l , _) , (u , _)) ↓p with head l | ⊝ (tail l) | − (head u) | tail u
... | α | a | β | b = (α ⊛ b) ⊝ (β ⊛ a) ⊝ (# ((α − + 1) ∗ (β − + 1)))

The dark shadow reduces to the real shadow when all 𝛼𝑖 or all 𝛽𝑗 are 1. I use the function
_↓p for both computations, and then interpret the results accordingly. Unsatisfiability can only
be asserted if the real shadow’s precondition is met. If it is not, unsatisfiable needs to be
interpreted as undecided. Following, an elimination procedure for quantifier free formulae.
⊨?_[ [] /x] decides constraints with no variables, as shown in the next section.

Ω ∶ ∀ {i} → List (Linear i) → Result
Ω {zero} as with all ⊨?_[ [] /x] as
Ω {zero} as | yes _ = satisfiable
Ω {zero} as | no _ = unsatisfiable
Ω {suc i} as with Ω (as ↓)
Ω {suc i} as | unsatisfiable with all α≡1∨−β≡−1? (pairs as)
Ω {suc i} as | unsatisfiable | yes _ = unsatisfiable
Ω {suc i} as | unsatisfiable | no _ = undecided
Ω {suc i} as | r = r
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5.3.3. Verification
This subsection verifies the soundness of the incomplete elimination procedure on quantifier-
free formulae presented above. The exact specification follows:

Ω−Sound ∶ ∀ {i} (as ∶ List (Linear i)) → Set
Ω−Sound as with Ω as
Ω−Sound as | undecided = ⊤
Ω−Sound as | satisfiable = ⊨ as
Ω−Sound as | unsatisfiable = ⊨ as → ⊥

No proof is required if the procedure is incapable of deciding the input; an environment
satisfying the input is required if the input is decided satisfiable; a function showing the inad-
equacy of any given environment is required if the input is decided unsatisfiable. The goal is
to satisfy this predicate for any conjunction of constraints. (The meaning of ⊨ is explained
below.)

Preamble

Although their definitions are available in the source code accompanying this report, my aim
is to provide the reader with an intuition of the meaning of some of the different symbols used
in this subsection.

Env i An environment with i variables, usually named ρ.

LowerBound, Irrelevant, UpperBound Predicates on a linear’s innermost variable’s coefficient
𝑐. They state 0<𝑐, 0=𝑐 and 0>𝑐 respectively.

Pair i A pair of lower bound and upper bound constraints, usually named lu.

Pair ∶ (i ∶ ℕ) → Set
Pair i = Σ (Linear i) LowerBound × Σ (Linear i) UpperBound

[ ρ /x] a The integer result of substituting the variables in a with the values in the environment
ρ and evaluating.

⊨[ ρ /x] a The foundation stone of verification: the interpretation of the value a as a type
after substitution.

⊨[_/x] ∶ ∀ {i} → Env i → Linear i → Set
⊨[ ρ /x] a = + 0 ≤ ([ ρ /x] a)

⊨? a [ ρ /x] A function deciding whether the interpretation of a after substitution is inhabited.
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⊨ as An environment satisfying every a in as after substitution.

⊨ ∶ ∀ {i} → List (Linear i) → Set
⊨ {i} as = Σ (Env i) λ ρ → ∀[ as ] ⊨[ ρ /x]

Variations …p For convenience. The function is applied to a pair of lower bound and upper
bound constraints.

Variations …i For convenience. The function is applied to an irrelevant constraint.

∀[ xs ] P The proof that P x for every x in xs.

∃[ xs ] P The proof that P x for some x in xs.

Dark shadow

The goal is to prove that the elimination performed by the dark shadow preserves satisfiability:
whenever a formula is satisfiable after applying dark shadow elimination to it, it must be shown
to be satisfiable before elimination too.

⋀
𝑖,𝑗
(𝛼𝑖 − 1)(𝛽𝑖 − 1) ≤ 𝛼𝑖𝑏𝑗 − 𝑎𝑖𝛽𝑗 ⟹ ∃𝑥.𝐿(𝑥) ∧𝑈(𝑥)

The original proof proceeds by induction on every 𝐿(𝑥)×𝑈(𝑥) pair, where the proof obliga-
tion is fulfilled resorting to a proof by contradiction:

¬(∃𝑥.𝑎 ≤ 𝛼𝑥∧ 𝛽𝑥 ≤ 𝑏) ⟹ ¬(𝛼− 1)(𝛽 − 1) ≤ 𝛼𝑏− 𝑎𝛽
However, 𝑃 cannot be generally concluded from ¬𝑃→⊥ in constructive mathematics: the

first requires a witness 𝑝∶𝑃 that the later does not provide. Nevertheless, a proof by contra-
diction still has its use. If the elements to test for 𝑃 can be limited to a finite set, a proof by
contradiction — showing that it cannot be that 𝑃 is false for every element — can be used to
build a terminating search function that is guaranteed to find an element satisfying 𝑃.

Below I present such a generalised search function, searching within a finite list for elements
satisfying a decidable predicate.

search ∶ {A ∶ Set} {P ∶ A → Set} (P? ∶ Decidable P) (as ∶ List A)
→ (All (¬_ ∘ P) as → ⊥)
→ Σ A P

search P? [] raa = ⊥−elim (raa [])
search P? (a ∷ as) raa with P? a
search P? (a ∷ as) raa | yes p = a , p
search P? (a ∷ as) raa | no ¬p = search P? as (λ ¬pas → raa (¬p ∷ ¬pas))

In this case, the search is for some 𝑥 that satisfies a conjunction of constraints of form 𝑎≤
𝛼𝑥∧𝛽𝑥≤𝑏, with𝛼 and 𝛽 positive and non-zero. For every constraint, 𝑥must be bound between
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⌊𝑎𝛼⌋ and ⌈𝑏𝛽⌉; the conjunction of all constraints must be bound between the highest lower bound
and the lowest upper bound.

start ∶ ∀ {i} → Env i → List (Σ (Linear (suc i)) LowerBound) → ℤ
start ρ ls = List.foldr _⊔_ (+ 0) (map (a/α ρ) ls)

stop ∶ ∀ {i} → Env i → List (Σ (Linear (suc i)) UpperBound) → ℤ
stop ρ us = List.foldr _⊓_ (+ 0) (map (b/β ρ) us)

search−space ∶ ∀ {i} → Env i → List (Pair (suc i)) → List ℤ
search−space ρ lus with start ρ (map proj1 lus)
search−space ρ lus | Δ0 with stop ρ (map proj2 lus) − Δ0
search−space ρ lus | Δ0 | + n = List.applyUpTo (λ i → + i + Δ0) n
search−space ρ lus | Δ0 | −[1+ n ] = []

The proof outlined by Norrish could be used as a guarantee of the success of the search.
However, while Norrish’s proof by contradiction is on individual pairs of constraints…

⊨norrish ∶ ∀ {i} (ρ ∶ Env i) (xs ∶ List ℤ) (lu ∶ Pair (suc i))
→ ¬ ∃[ xs ] (λ x → ⊨[ x ∷ ρ /x]p lu)
→ ¬ ⊨[ ρ /x] (lu ↓p)

…the search function demands a proof by contradiction on the entire conjunction of con-
straint pairs.

by−contradiction ∶ ∀ {i} (ρ ∶ Env i) (xs ∶ List ℤ) (lus ∶ List (Pair (suc i)))
→ ∀[ map _↓p lus ] ⊨[ ρ /x]
→ ¬ ∀[ xs ] (λ x → ¬ ∀[ lus ] ⊨[ x ∷ ρ /x]p)

Nevertheless, the premise that must be proven false (informally, ∀𝑥.¬∀𝑙𝑢.⊨𝑥𝑙𝑢) is equiv-
alent to the form ∃𝑙𝑢.¬∃𝑥.⊨𝑥𝑙𝑢 — where every 𝑙 is paired with every 𝑢. This later form is
suitable to be fed into Norrish’s proof by contradiction, which for any 𝑙𝑢 expects ¬∃𝑥.⊨𝑥𝑙𝑢.
The difference is that Norrish’s proof is used only once. Note that the unsolved postulate is the
justification offered by Norrish for his initial induction. The proof is a one-way implication,
but bi-implication can be shown.

postulate ∀lus∃xs⇒∃xs∀lus ∶ ∀[ lus ] (λ lu → ∃[ xs ] (λ x → ⊨[ x ∷ ρ /x]p lu))
→ ∃[ xs ] (λ x → ∀[ lus ] ⊨[ x ∷ ρ /x]p)

∀xs¬∀lus⇒∃lus¬∃xs ∶ ∀[ xs ] (λ x → ¬ ∀[ lus ] ⊨[ x ∷ ρ /x]p)
→ ∃[ lus ] (λ lu → ¬ ∃[ xs ] λ x → ⊨[ x ∷ ρ /x]p lu)

∀xs¬∀lus⇒∃lus¬∃xs = begin
∀[ xs ] (λ x → ¬ ∀[ lus ] ⊨[ x ∷ ρ /x]p)
∼⟨ AllProp.All¬⇒¬Any ⟩
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¬ ∃[ xs ] (λ x → ∀[ lus ] ⊨[ x ∷ ρ /x]p)
∼⟨ (λ ¬∃xs∀lus ∀lus∃xs → ¬∃xs∀lus (∀lus∃xs⇒∃xs∀lus ∀lus∃xs)) ⟩

¬ ∀[ lus ] (λ lu → ∃[ xs ] λ x → ⊨[ x ∷ ρ /x]p lu)
∼⟨ AllProp.¬All⇒Any¬ (λ lu → any (λ x → ⊨? lu [ x ∷ ρ /x]p) xs) lus ⟩

∃[ lus ] (λ lu → ¬ ∃[ xs ] λ x → ⊨[ x ∷ ρ /x]p lu)
∎

where open ⇒−Reasoning

Finally, the 𝑙𝑢 pair for which ¬∃𝑥.⊨𝑥𝑙𝑢 is found and used to derive a constradiction using
Norrish’s proof.

¬∃lus¬∃xs ∶ (lus ∶ List (Pair (suc i)))
→ ∀[ map _↓p lus ] ⊨[ ρ /x]
→ ∃[ lus ] (λ lu → ¬ ∃[ xs ] λ x → ⊨[ x ∷ ρ /x]p lu)
→ ⊥

¬∃lus¬∃xs [] [] ()
¬∃lus¬∃xs (lu ∷ lus) (⊨lu↓ ∷ ⊨lus↓) (here ¬∃xs) = ⊨norrish ρ xs lu ¬∃xs ⊨lu↓
¬∃lus¬∃xs (lu ∷ lus) (⊨lu↓ ∷ ⊨lus↓) (there ∃lus¬∃xs) = ¬∃lus¬∃xs lus ⊨lus↓ ∃lus¬∃xs

Put together, this satisfies the proof by contradiction:

by−contradiction ∶ ∀ {i} (ρ ∶ Env i) (xs ∶ List ℤ) (lus ∶ List (Pair (suc i)))
→ ∀[ map _↓p lus ] ⊨[ ρ /x]
→ ¬ ∀[ xs ] (λ x → ¬ ∀[ lus ] ⊨[ x ∷ ρ /x]p)

by−contradiction {i} ρ xs lus ⊨lus↓ ∀xs¬∀lus =
¬∃lus¬∃xs lus ⊨lus↓ (∀xs¬∀lus⇒∃lus¬∃xs ∀xs¬∀lus)

The proof by contradiction is then used to guarantee the success of the search for 𝑥:

⊨↑p ∶ ∀ {i} (ρ ∶ Env i) (lus ∶ List (Pair (suc i)))
→ ∀[ map _↓p lus ] ⊨[ ρ /x]
→ Σ ℤ λ x → ∀[ lus ] ⊨[ x ∷ ρ /x]p

⊨↑p ρ lus ⊨lus↓ with search−space ρ lus
⊨↑p ρ lus ⊨lus↓ | xs = search (λ x → all ⊨?_[ x ∷ ρ /x]p lus ) xs (by−contradiction ρ xs lus ⊨lus↓)

Norrish’s proof

Below, I briefly reproduce Norrish’s proof of soundness for the dark shadow. For any pair of
lower bound and upper bound constraints, it has to be shown that:

(𝛼 − 1)(𝛽 − 1) ≤ 𝛼𝑏− 𝑎𝛽 ⟹ (∃𝑥.𝑎 ≤ 𝛼𝑥∧ 𝛽𝑥 ≤ 𝑏)
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To prove it, assume the opposite. Then, there is no multiple of 𝛼𝛽 between 𝑎𝛽 and 𝛼𝑏:

¬∃𝑥.𝑎𝛽 ≤ 𝛼𝛽𝑥 ≤ 𝛼𝑏
As both 0<𝛼 and 0<𝛽, the other assumption implies that 𝑎𝛽≤𝛼𝑏. Take 𝑖 to be the greatest

multiple of 𝛼𝛽 less than 𝑎𝛽. Then

𝛼𝛽𝑖 < 𝑎𝛽 ≤ 𝛼𝑏 < 𝛼𝛽(𝑖 + 1)
Because 0<𝛼𝛽(𝑖+1)−𝛼𝑏, conclude 1≤𝛽(𝑖+1), and thus 𝛼≤𝛼𝛽(𝑖+1)−𝛼𝑏. Similarly, 𝛽≤𝑎𝛽−

𝛼𝛽𝑖. Infer 𝛼+𝛽≤𝛼𝛽+𝑎𝛽−𝛼𝑏, or (re-arranging), 𝛼𝑏−𝑎𝛽<𝛼𝛽−𝛼−𝛽+1, which contradicts the
first assumption.

I do not intend to reproduce here the entire proof as written in Agda. In fact, time constraints
and the low priority I assigned to filling in the details made me keep some sub-goals as un-
finished postulates. Instead, I show how the main goal is split into smaller sub-goals and how
those are later put back together. I also give an example of a finished sub-goal proof to show
the reader what it looks like.

I use a parametrised module for all proofs that involve a particular lower bound and upper
bound pair. I open the constituents of the supplied pairs so that I can refer to them more
comfortably from within types.

module Norrish {i ∶ ℕ} (ρ ∶ Env i) (lu ∶ Pair (suc i)) where
l = proj1 lu
u = proj2 lu
α = head (proj1 l)
−a = tail (proj1 l)
a = ⊝ −a
0<α = proj2 l
−β = head (proj1 u)
β = − −β
b = tail (proj1 u)
0>−β = proj2 u
0<β ∶ + 0 < β
0<β with −β | 0>−β
0<β | +_ _ | +≤+ ()
0<β | −[1+_] n | z = +≤+ (Nat.s≤s Nat.z≤n)
n = a/α ρ l

I define the form of some sub-goals separately, so that I can later refer to them from within
multiple types too.

aβ≤αb ∶ Linear i
aβ≤αb = ((α ⊛ b) ⊝ (β ⊛ a))

Next, a proof for one of the sub-goals, where I show that (𝛼−1)(𝛽−1)≤𝛼𝑏−𝑎𝛽 implies 𝑎𝛽≤
𝛼𝑏 when both 0<𝛼 and 0<𝛽. Observations that are a common requirement to multiple sub-
goals have been abstracted away into lemmas.
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⊨βa≤αb ∶ ⊨[ ρ /x] (aβ≤αb ⊝ (# [α−1][β−1])) → ⊨[ ρ /x] aβ≤αb
⊨βa≤αb ⊨ds = begin
+ 0
≤⟨ ⊨ds ⟩

[ ρ /x] (aβ≤αb ⊝ (# [α−1][β−1]))
≡⟨ cong (λ ● → [ ρ /x] (aβ≤αb ⊕ ●)) (⊝#n≡#−n [α−1][β−1]) ⟩

[ ρ /x] (aβ≤αb ⊕ (# (− [α−1][β−1])))
≡⟨ [ ρ /x]−⊕ _ _ ⟩

[ ρ /x] aβ≤αb + [ ρ /x] (# (− [α−1][β−1]))
≡⟨ cong (λ ● → [ ρ /x] aβ≤αb + ●) ([ ρ /x]−# _) ⟩

[ ρ /x] aβ≤αb − [α−1][β−1]
≤⟨ 0≤n→m−n≤m _ _ ⊨0≤[α−1][β−1] ⟩

[ ρ /x] aβ≤αb
∎

where open ≤−Reasoning

Putting the remaining sub-goals together, I supply Norrish’s proof:

⊨norrish ∶ ∀ {i} (ρ ∶ Env i) (xs ∶ List ℤ) (lu ∶ Pair (suc i))
→ ¬ ∃[ xs ] (λ x → ⊨[ x ∷ ρ /x]p lu)
→ ¬ ⊨[ ρ /x] (lu ↓p)

⊨norrish ρ xs lu ⊭xs ⊨lu↓ =
let ps = ⊨αβn<aβ≤αb<αβ[n+1] (⊨βa≤αb ⊨lu↓ ) ⊭xs
in ⊭[α−1][β−1]≤αb−aβ (⊨α≤αβ[n+1]−αb ps) (⊨β≤aβ−αβn ps) ⊨lu↓

where open Norrish ρ lu

Real shadow

The dark shadow preserves satisfiability. It must be shown that whenever the real shadow is
applied, unsatisfiability is preserved too. Where all 𝛼𝑖 or all 𝛽𝑖 are 1:

¬⋀
𝑖,𝑗
(𝛼𝑖 − 1)(𝛽𝑗 − 1) ≤ 𝛼𝑖𝑏𝑗 − 𝑎𝛽𝑗 ⟹ ¬∃𝑥.𝐿(𝑥) ∧𝑈(𝑥)

That is, given arguments ⋀𝑖,𝑗(𝛼𝑖−1)(𝛽𝑗−1)≤𝛼𝑖𝑏𝑗−𝑎𝛽𝑗 ⟹ ⊥ and ∃𝑥.𝐿(𝑥)∧𝑈(𝑥), the lat-
ter must be transformed into an argument suitable to the former. Using induction, the proof
obligation can be reduced to a predicate on lower bound and upper bound pairs.

(∃𝑥.𝑎 ≤ 𝛼𝑥∧ 𝛽𝑥 ≤ 𝑏) ⟹ (𝛼− 1)(𝛽 − 1) ≤ 𝛼𝑏− 𝑎𝛽
After the conjuncts on the LHS of the implication are appropriately multiplied, 𝑎𝛽≤𝛼𝑏 by

transitivity of ≤. The proof concludes as (𝛼−1)(𝛽−1) reduces to 0 when either 𝛼 or 𝛽 are 1.
Below, such a proof written in Agda.
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⊨real−shadow ∶ (x ∶ ℤ) → (α ≡ + 1 ⊎ −β ≡ − + 1)
→ ⊨[ x ∷ ρ /x] (α x+ −a)
→ ⊨[ x ∷ ρ /x] (−β x+ b)
→ ⊨[ ρ /x] (aβ≤αb ⊝ (# [α−1][β−1]))

⊨real−shadow x α≡1∨−β≡−1 a≤αx βx≤b = begin
+ 0
≤⟨ ⊨[ ρ /x]−trans (β ⊛ a) (# (α ∗ β ∗ x)) (α ⊛ b)
(a≤αx⇒aβ≤αβx x a≤αx ) (βx≤b⇒αβx≤αb x βx≤b) ⟩

[ ρ /x] aβ≤αb
≡⟨ sym (IntProp.+−identityr _) ⟩

[ ρ /x] aβ≤αb + (+ 0)
≡⟨ cong (λ ● → [ ρ /x] aβ≤αb + ●) (sym ([ ρ /x]−# (+ 0))) ⟩

[ ρ /x] aβ≤αb + [ ρ /x] (# (+ 0))
≡⟨ sym ([ ρ /x]−⊕ aβ≤αb (# (+ 0))) ⟩

[ ρ /x] (aβ≤αb ⊕ (# (+ 0)))
≡⟨ cong (λ ● → [ ρ /x] (aβ≤αb ⊕ ●)) (sym (⊝#n≡#−n (+ 0))) ⟩

[ ρ /x] (aβ≤αb ⊝ (# (+ 0)))
≡⟨ cong (λ ● → [ ρ /x] (aβ≤αb ⊝ (# ●))) (sym (α≡1∨−β≡−1→[α−1][β−1]≡0 α≡1∨−β≡−1)) ⟩

[ ρ /x] (aβ≤αb ⊝ (# [α−1][β−1]))
∎

where open ≤−Reasoning

Delivering soundness

Next, I prove the soundness of the elimination procedure for normalised formulae of the fol-
lowing form:

∃𝑥.∃𝑥1.…∃𝑥𝑛. 0 ≤ 𝐴[𝑥,𝑥1,… ,𝑥𝑛] ∧ 0 ≤ 𝐵[𝑥,𝑥1,… ,𝑥𝑛]
The elimination process has to be shown to preserve both unsatisfiability and satisfiability.

I do not reproduce these proofs here, they are rather bulky. Instead, I comment on their logic,
although I recommend reading their code alongside.

Ω−sound ∶ ∀ {i} (as ∶ List (Linear i)) → Ω−Sound as
Ω−sound as with Ω as | inspect Ω as
Ω−sound as | undecided | _ = tt
Ω−sound as | unsatisfiable | >[ eq ]< = unsat as eq
Ω−sound as | satisfiable | >[ eq ]< = sat as eq

Both proofs are recursively built. If an input is decided unsatisfiable (goal ⊨as→⊥), a proof
of unsatisfiability after elimination (⊨as↓→⊥) is obtained recursively. Then satisfiability before
elimination is assumed (⊨as) and satisfiability after elimination derived (⊨as↓) through the use
of ⊨real−shadow. From there, a contradiction is obtained.
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If an input is decided satisfiable (goal ⊨as), a proof of satisfiability after elimination (⊨as↓)
is obtained recursively. Then ⊨↑p adds a new 𝑥 to the environment, and returns a proof (⊨as)
that by doing so, satisfiability is preserved.

Clearly, irrelevant constraints — those where the variable to eliminate has coefficient 0 —
do not have their meaning altered by elimination. Similarly, the meaning of no constraint
changes after a variable with coefficient 0 is prepended to it. Given that theOmega Test requires
constraints to be split into lower bounds and upper bounds, I handle irrelevant constraints
outside of the it.
partition partitions a list of constraints into three sub-lists: lower bound constraints, irrele-

vant constraints and upper bound constraints. Functions pairs and irrels then use such output
to generate a cartesian product of all lower bound and upper bound constraints, and a list of
irrelevant constraints, respectively. These functions carefully avoid pattern matching on the
output of partition. If they were to pattern match, Agda would no longer relate the results of
pairs and irrels to the original list.

The function entangle mixes together proofs on pairs of bounds and proofs on irrelevant
constraints into proofs on their original list. untanglei and untanglep do the reverse. If the
satisfiability predicate were to be defined on sets instead of on lists, these functions would
become unnecessary.

5.3.4. Results and usage
To demonstrate an example usage of the presented elimination procedure, I slightly augment
the syntax of the normalised input formulae handled by the soundness proof and include negated
existentials.

data NormalForm (i ∶ ℕ) ∶ Set where
∃ ∶ NormalForm (suc i) → NormalForm i
¬∃ ∶ NormalForm (suc i) → NormalForm i
st ∶ List (Linear i) → NormalForm i

Accepting universal quantifiers implies accepting full-blown normalised Presburger formu-
lae (because ∀𝑥.𝑃(𝑥)≡¬∃𝑥.¬𝑃(𝑥), which results in disjunctions if 𝑃(𝑥) contains conjunc-
tions). Accepting full-blown normalised Presburger formulae as presented in § 5.3.1 increases
the complexity of the proof of soundness. I restrict the syntax of unnormalised expressions
accordingly and mark the handling of full-blown Presburger formulae for future work.

The elimination procedure negates its output on every negated existential and ultimately
relies on the previously defined Ω.

Ω⇓ ∶ ∀ {i} → NormalForm i → Result
Ω⇓ (∃ nf) = Ω⇓ nf
Ω⇓ (¬∃ nf) with Ω⇓ nf
Ω⇓ (¬∃ nf) | satisfiable = unsatisfiable
Ω⇓ (¬∃ nf) | unsatisfiable = satisfiable
Ω⇓ (¬∃ nf) | undecided = undecided
Ω⇓ (st as) = Ω as
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Soundness is defined for such elimination procedure and proven in a way similar to the proof
in § 5.3.3. This time, the two functions proving satisfiability and unsatisfiability recurse on each
other every time an existential quantifier is negated.

Following, a set of example usages. The terms inside of {!…!} are not accepted by the
type-checker:

-- Shortcuts

x ∶ ∀ {i} → Atom (suc (suc i))
x = var࿞ (suc zero)

y ∶ ∀ {i} → Atom (suc i)
y = var࿞ zero

-- Some theorems typecheck

ex1 ∶ Σ ℤ λ x → Σ ℤ λ y → + 0 < x × x + + 1 < + 2 ∗ y × y < + 4
ex1 = solve (∃࿞ ∃࿞ ∶ ((num࿞ (+ 0) [ <࿞ ] x)

∧࿞ (x +࿞ (num࿞ (+ 1))) [ <࿞ ] ((+ 2) ∗࿞ y)
∧࿞ y [ <࿞ ] (num࿞ (+ 4))))

ex2 ∶ ¬ Σ ℤ λ x → Σ ℤ λ y → y > + 0 × x − y ≥ x
ex2 = solve (¬࿞ ∃࿞ ∃࿞ ∶ y [ >࿞ ] num࿞ (+ 0) ∧࿞ (x −࿞ y) [ ≥࿞ ] x)

-- Predicates proven false do not typecheck

ex3 ∶ Σ ℤ λ y → y < y
ex3 = {!solve(∃࿞∶(y[<࿞]y))!}

-- The negation of predicates proven false do typecheck

¬ex3 ∶ ¬ Σ ℤ λ y → y < y
¬ex3 = solve (¬࿞ ∃࿞ ∶ (y [ <࿞ ] y))

-- The decision procedure is sound but incomplete

-- Sometimes, neither a predicate nor its negation typecheck

ex4 ∶ Σ ℤ λ x → Σ ℤ λ y → + 2 ∗ x ≡ + 2 ∗ y + + 1
ex4 = {!solve(∃࿞∃࿞∶(((+2)∗࿞x)[=࿞](((+2)∗࿞y)+࿞num࿞(+1))))!}

¬ex4 ∶ ¬ Σ ℤ λ x → Σ ℤ λ y → + 2 ∗ x ≡ + 2 ∗ y + + 1
¬ex4 = {!solve(¬࿞∃࿞∃࿞∶(((+2)∗࿞x)[=࿞](((+2)∗࿞y)+࿞num࿞(+1))))!}
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5.3.5. Future work
Although the present development is in my view satisfactory, there is ample room for further
work. Below is a to-do list, ordered by priority, of what my work after submission is likely to
be.

Removal of postulates Currently several base lemmas remain postulates and so do several
lemmas used by Norrish. Fulfilling these is a priority and — I am confident — a very
realistic goal. Once completed, Agda can compile the program in safe mode: after that
the correctness of the program is proven beyond any reasonable doubt.

Evaluation of normal forms Evaluation is currently defined for a subset of input formulae.
Evaluating full-blown formulae requires a more complex proof of the correctness of
normalisation and a more complex evaluation procedure. Still, this complexity would
not impregnate the “inner” layer of the proof of soundness, and the implementation of
Norrish’s proof would remain unchanged.

Verification of the normalisation process Because I had not enough time to evaluate nor-
mal forms, I did not attempt to verify normalisation correct either. This is likely to be
mildly labourious.

Quoting Building input formulae automatically out of users’ goals is a major usability im-
provement.

Submission to the standard library Submitting my development for inclusion in Agda’s
standard library would be the culmination of this work. There is no guarantee this will
happen and, if it does, I expect it to entail considerable communication and adaptation
work.

Implementation and verification of splinters Most proof assistants provide incomplete
Presburger solvers that do not make use of splinters. Given the complexity of imple-
menting and verifying them, this as an entirely optional goal.

5.4. Cooper’s Algorithm
During my initial research phase, I briefly considered Cooper’s Algorithm as a candidate for
a verified Presburger arithmetic solver. First introduced in [Cooper, 1972], [Norrish, 2003]
and [Chaieb and Nipkow, 2003] provide comprehensible reviews and discuss implementation
details.

The main elimination theorem handles both disjunctions and conjunctions, and thus there is
no need to normalise input formulae into DNF or CNF, but negation needs to be pushed inside.
Once a quantifier-free expression is selected for variable elimination, the lowest common mul-
tiplier ℓ of all coefficients on 𝑥 needs to be computed, all constraints multiplied appropriately
so that their coefficients on 𝑥 is ±ℓ and finally, all coefficients on 𝑥 divided by ℓ in accordance
to the following equivalence:
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𝑃(ℓ𝑥) ≡ 𝑃(𝑥) ∧ ℓ|𝑥
Implementing the main elimination step is straightforward as well. The main theorem oper-

ates on divides terms too, and there is therefore no need to eliminate them.
As with the Omega Test, elimination occurs into an equivalent disjunction, which leaves

three goals to be verified—𝐷1⟹ LHS,𝐷2⟹ LHS and LHS∧¬𝐷2⟹𝐷1. However, unlike with
the Omega Test, no shortcut can be applied to decide a formula unsatisfiable; partly verifying
the theorem results in an incomplete procedure only capable of announcing the satisfiability
of a quantifier-free formula. Verifying the whole theorem is considerably more complex than
verifying the totality of the Omega Test, and I therefore discarded the more efficient Cooper’s
Algorithm in favour of the simpler Omega Test.
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6. Verification and validation
Dependent types facilitate definitions up to a great level of precision. These types are used to
accurately model specifications. A formal specification is then considered to have been met if a
term inhabiting its corresponding type is supplied. No amount of anecdotal evidence (testing)
can obtain the grade of verification attained by these machine-checked formal proofs. These
machine-proofs are much stronger evidence than human pair reviews. § 2.1 introduces the
correspondence between logic and computation.

For the exact details on the verification of the software developed for this report, I refer the
reader to the corresponding sections § 3.2, § 4.1 and § 5.3.3 and to the accompanying source
code. The brevity of this chapter is a consequence of the central role that verification plays
through the entire work.

Due to time constraints, some propositions in § 5 remain postulates and therefore circumvent
all verification. However, these are all relatively simple lemmas or have been proven correct
in [Norrish, 2003], and I am confident that with sufficient time I could satisfy them. If these
postulates are accepted as truthful, the rest of the developed software follows as verified.

This report and the source code that comes with it are literate Agda files. They must be
type-checked to automatically have their syntax highlighted. This occurs as part of the build
process every time this report is built.
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7. Overall evaluation
This project set out to research the construction of evidence providing problem solvers in Agda.
I selected three problems to explore: equations on monoids, for which I provide a completely
verified solver; equations on commutative rings, for which I gain insight from an already ex-
isting solution; and Presburger arithmetic, for which I build a solution for the first time imple-
mented in Agda.

The solutions in § 3 and § 4 are final — they fully settle their respective problems. The
solution for § 5 is not, hence I outline future work in § 5.3.5. Nevertheless, in § 5.3.4 I provide
a limited interface through which the user can already benefit from my work.

There exists no reasonable doubt about the correctness of the solver for monoids, the solver
for commutative rings or, obviating postulates, the solver for Presburger arithmetic. The pos-
tulated claims are all reasonable to make and have, in many cases, already been proven by
others.

The research work involved in this project has been considerable — particularly during the
problem selection phase. Although two deliverables were produced, this project was primarily
a research project. A plethora of little discoveries had to be made and often, progress was
rather slow and irregular. Asmy supervisor well put it, my learning process was by implosion: I
started with a multitude of ill-defined concepts and vague ideas and no sense of their relevance.
They were gradually refined and made more precise.

In the course of this project, and sometimes indirectly, I learned bits and pieces about abstract
algebra, type theory, category theory and logic. I now better understand what it is to solve a
problem constructively; how proofs of correctness are structured; how implementation and
verification relate; how Agda’s pattern matching and unification works; and what dependent
types have to bring to the table. Finally, the experience of interpreting and formally reproducing
a scientific paper has been invaluable.

7.1. Organisation
I used my blog mostly to sketch new ideas and take notes, not so much for planning. For that, I
relied on my whiteboard — the source of all organisation in my living. Once I started writing
this report, I used the LATEXpackage todonotes to keep track of tasks within the report itself.
Tasks are highlighted as big orange notes on the sides of pages, and are impossible to miss
during reviews. I used grep to list all these tasks.

Below is a brief breakdown of this project’s timeline:
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2017-10

• understand what an evidence providing
problem solver is

• start absorbing the literature

• start the blog

2017-11

• solve equations on monoids

• start reading about solving equations on
commutative rings

2017-12

• examine the existing solution for solving
commutative rings

• start reading about solving Presburger
arithmetic

2018-01

• start working on solving Presburger
arithmetic

2018-02

• decidewhat decision algorithm to use for
Presburger arithmetic

• write the background chapter
• polish the monoid solver
• write the chapter on solving monoids

2018-03

• solve Presburger arithmetic
• write the chapter on solving Presburger

arithmetic
• write the chapter on solving commuta-

tive rings
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8. Summary and conclusions
This report explores the construction of verified problem solvers for three distinct problem
domains. § 3 provides a detailed description of a solver for equations onmonoids; § 4 examines
an existing solution for equations on commutative rings and draws parallelisms to the solution
for monoids; § 5 is an ongoing attempt to define a solver for Presburger arithmetic in Agda.

Time constraints limited my work on the Presburger arithmetic solver. Much is still to be
done, but the contributed work encompasses the heart of it — and provides an interface for a
subset of Presburger formulae to be proven. Future work is outlined in § 5.3.5.

Perhaps most importantly, this project has been of invaluable educational significance for
me — more on this in 7. I will likely aspire to find further entertainment within the field.
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A. Program listing
The sources necessary to build this report — including the source files that contain all the
quoted code listings—can be found in thereport directory at https://github.com/umazalakain/
fyp. All programs have been written for Agda 2.5.3.

Running make modules inside the report directory will compile all Agda code present
in this report and any modules it depends on. The only required external library is Agda’s stan-
dard library, obtainable from https://github.com/agda/agda-stdlib. (Installation instruc-
tions can be found at https://agda.readthedocs.io/en/v2.5.3/tools/package-system.html#
example-using-the-standard-library.) Running make inside the report directory first
compiles all source code and then outputs the report as PDF.

Dependent types accurately describe the behaviour of functions, often more so than doc-
umentation. The interesting parts of the source code are already commented in this work
and therefore — in the interest of not repeating oneself and judging dependent types self-
documenting enough — there has been no significant documentation added to the source
code itself.

During the course of this project I fixed a small bug making spacing of compiled literate
Agda programs inconsistent and unpleasant to the eye. The commit 8b83da6 can be cherry-
picked from Agda’s master branch.
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